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Abstract

An energy correlation hypothesis between a damaged macroscopic continuum and its sub-scale virgin, or matrix,
material is established in the present paper. Two energy equivalence principles are proposed based on the

geometrical de®nitions of the damage parameter and thermodynamic principles, which give relationships between
macroscopic and e�ective de®nitions of stress and strain. These relationships are used to obtain yield condition and
plastic ¯ow rule for the damaged material when the mechanical properties of undamaged virgin, or matrix, material

are given. It is shown that a link between the void growth model (VGM) and the continuum damage mechanics
(CDM) exists when a more general de®nition of e�ective stress is used. Contradictory damage parameters based on
di�erent damage measuring techniques and equivalence hypotheses in CDM are clari®ed. 7 2000 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

The development of material damage has been recognized as an important factor during a ductile
failure process. Various theories and models have been proposed to study the in¯uence of damage on
structural response and failure. Two widely accepted methods are continuum damage mechanics (CDM)
and the void growth model (VGM).

CDM was proposed by Kachanov (1958) for the creep failure of metals under uniaxial loads.
This concept was taken up again in the seventies and extended to ductile and fatigue material
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failures within the framework of the thermodynamics of irreversible processes (Lemaitre and
Chaboche, 1990).

A CDM model is normally based on two basic concepts, i.e., e�ective stress and an equivalence
hypothesis. Various equivalence hypotheses have been proposed in order to transform the deformation
state in macroscopic scale into its equivalent sub-scale where the virgin material is assumed to be
damage-free (Lemaitre and Chaboche, 1990). The strain equivalence hypothesis proposed by Lemaitre
(1971) and the elastic strain energy equivalence hypothesis introduced by Sidoro� (1981) and
Cordebois and Sidoro� (1983) have been widely used in developing a CDM model. For example,
Simo and Ju (1987) used the strain equivalence hypothesis in a continuum damage model and Ju
(1989) established a coupled elastoplastic damage theory based on the strain equivalence hypothesis.
Kattan and Voyiadjis (1990) and Voyiadjis and Kattan (1990) employed the elastic strain energy
equivalence hypothesis to formulate a coupled theory of elasticity and continuum damage mechanics.
Chow and Wang (1987a, b) used the elastic strain energy equivalence hypothesis to establish an
anisotropic theory of continuum damage mechanics. In this case, the elastic strain energy equivalence
hypothesis produces asymmetry of the sti�ness matrix when anisotropic damage is considered (Chow
and Wang, 1987a). Some authors have pointed out that the energy type equivalence hypothesis may
be of more physical signi®cance from the viewpoint of energy conservation (Zhu and Cescotto, 1992).
The existing hypothesis of elastic strain energy equivalence (Sidoro�, 1981) postulated that the
complementary elastic strain energy for a damage material is the same in form as that of an
undamaged material, except that the stress is replaced by the e�ective stress in the energy
formulation. Hansen and Schreyer (1994) discussed the relationship between strain equivalence and
elastic strain energy equivalence hypotheses. It was shown that the choice between these two di�erent
hypotheses has a marked di�erence on the behaviour of the damage model. Thus, it is necessary to
examine physical signi®cance of an equivalence hypothesis.

The void growth model (VGM) treats the damaged material as a composite of void and matrix
material. Matrix material can be treated as a damage-free material, which has the same physical
meaning as the virgin material in CDM. Thus, both CDM and VGM employ the same viewpoint that
the macroscopic damage or void developments are due to the plastic deformation of damage-free virgin
material, or matrix material, in mesoscale (damage or void-size scale). In the following discussion, the
term, `matrix material', has the same meaning as `virgin material', and will be used in most places in
both CDM and VGM models.

Based on the understanding of a single void development on mesoscale for di�erent basic void
geometries, a proper average technique over the macroscopic scale may lead to some macroscopic
mechanical properties of the damaged materials (Rice and Tracey, 1967; McClintock, 1968;
Thomason, 1990). One successful model of this type is Gurson's (1977) model, which leads to a
macroscopic yield condition including material damage e�ects. This model was modi®ed by Tvergaard
(1981) and Tvergaard and Needleman (1984) to consider the interactions between voids, which have
been summarized by Tvergaard (1990), and have been used widely in predicting material ductile
failures.

VGM faces the same problem as in CDM when transforming the deformation state in macroscopic
scale into its equivalent sub-scale on matrix material level. In VGM, an assumption of plastic strain
energy conservation in an average sense is employed to accomplish this transformation. VGM is valid
within the plastic deformation range, while CDM is applicable in both the elastic and inelastic ranges. It
appears that CDM is more likely to be a phenomenological model based on thermodynamics and VGM
is an average technique for a plastic boundary value problem in the mesoscale. No matter how di�erent
the basic foundations are between them, they have been used to solve the same class of problems when
material damage e�ects on the structural response and failure are signi®cant. The mechanical properties
of the damage-free matrix material were used in both models to obtain the macroscopic material
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constitutive equations in a damaged state. Unfortunately, little attention has been paid to the
relationship between these two theories. Thus, it is worth to explore the possible relationships between
them, which may lead to further development of the existing material damage theories.

A hypothesis of energy correlation between a macroscopic damaged continuum and its equivalent
sub-scale in matrix material level is introduced in the present paper. Some basic concepts are clari®ed
in section 2. Thermodynamic foundations are presented in section 3, based on which energy
correlations of di�erent mechanical processes between two material scales are obtained to establish
relationships between macroscopic and e�ective de®nitions of stress and strain. These results are then
used in section 4 to examine the existing equivalence hypotheses and reveal the relationship between
CDM and VGM.

2. Basic concepts

For simplicity, the following discussion concentrates on isotropic plasticity and damage, although
anisotropy is an intrinsic feature of a damaged material (Chow and Wang, 1987a, b).

2.1. Damage de®nitions

There are various ways to de®ne material damage (Woo and Li, 1993). A widely accepted de®nition
in the macroscopic scale is the geometrical description of material damage. In CDM, the area density of
damage, proposed by Kachanov (1958), is de®ned by

D � Aÿ As

A
�1�

where A is the total cross-section area of a surface within the unit cell in one of the three perpendicular
directions, and As is the solid matrix area within A. In VGM, the volume density of damage is de®ned
by (Tvergaard, 1981, 1990; Tvergaard and Needleman, 1984)

f � Vÿ Vs

V
�2�

where V is the total volume of the unit cell and Vs is the solid matrix volume in the cell. Similarly, a
concept of line density of damage, l, may be introduced as

l � Lÿ Ls

L
�3�

where L is the characteristic length of the unit cell in one of the three perpendicular directions, and Ls is
the characteristic length of solid matrix in L. It should be noted that these damage densities are de®ned
at a `macroscopic point' that is large enough to be statistically representative of the properties of the
damaged material. D, f and l are understood as statistical averages among all possible values in the
selected cell.

From the regular arrangements of voids in a cell, it is not di�cult to obtain the following relationship
(see Appendix)

f � aD
3
2 �4�

where a=0.752 and a=1 for spherical and cubic voids, respectively. Because D and f are statistical
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averages among the unit material cell, Eq. (4) does not depend on a particular arrangement of the
voids.

2.2. Macroscopic stress and e�ective stress

Macroscopic, or homogenized (Ju, 1989), stress and strain are de®ned as the conventional stress and
strain for a unit material cell of a `macroscopic point'. In metal deformation, Euler stress (true stress)
and natural strain (true strain) are used in the constitutive equation.

E�ective stress is de®ned as the force divided by the `e�ective area' of the unit cell of a damaged
`macroscopic point'. The e�ective area of the unit cell is As or (1ÿD )A. Therefore, the relationship
between macroscopic stress (sij) and the corresponding e�ective stress � �sij� in a damaged material is

�sij � sij
1ÿD

�5�

The corresponding strain of an e�ective stress is called e�ective strain in CDM. Eq. (5) is a
mathematical de®nition of the e�ective stress although it may be understood as the average stress acting
on an e�ective area of the material. In order to give it a general physical meaning, it is necessary to use
the corresponding damage-free matrix material in mesoscale to represent the `e�ective' concept in Eq.
(5) for a macroscopically damaged material and a proper correlating hypothesis between two material
scale levels is required.

2.3. Virgin state and correlating hypothesis

For a damaged material, it is assumed that there exists a corresponding virgin state which is the same
material when all damages are removed (Lemaitre and Chaboche, 1990). The e�ective stress is the stress
applied to the virgin material. The existence of an e�ective stress in the virgin state and an equivalence
hypothesis are required as the theoretical foundation of CDM. In VGM, similar concepts are also used
when developing a constitutive equation where the stress and strain of undamaged matrix material are
introduced. Thus, as noted before, the term `matrix material' in VGM has the same meaning as the term
`virgin material' in CDM.

In order to correlate the pre-assumed virgin state and the actual damaged state, several equivalence
hypotheses have been proposed, which will be discussed further in section 4. In the present paper,
Freudenthal's (1950, pp. 20) proposal is employed to use an energy concept to correlate phenomena
between the virgin and damaged states, ``Correlation of behaviour on the di�erent levels is possible
only in terms of a concept which on all levels has the same meaning in both Newtonian and
statistical mechanics, the same dimension, and the same tensorial rank. This concept is energy. Being
a scalar, that is, a tensor of rank zero, it is an algebraically additive quantity and has the same
meaning on all levels of group of formation.'' A similar idea was also emphasized by Gordon (1976)
``You may ignore something in di�erent scales, but you cannot ignore energy which is a common
concept in every scale.''

It has been shown that the energy concept also plays an important role in material failure criteria
(Chaouadi et al., 1994; Shen and Jones, 1992), which will be studied in a separate paper (Li, 1999a). The
following hypothesis based on the energy concept is proposed in the present paper to obtain energy
equivalence principles.

Energy Correlating Hypothesis: Each type of energy process in a damaged material is the same as the
corresponding one in its equivalent virgin state.
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3. Thermodynamic foundation and energy equivalent principles

3.1. Thermodynamic foundation

It is assumed that the damaged material obeys the ®rst and second laws of thermodynamics and the
additive assumption of elastic and plastic strains in macroscopic scale, and thus, the following equations
may be obtained (Lemaitre and Chaboche, 1990)

sij � r
@c
@Ee

ij

�6a�

s � ÿ@c
@T

�6b�

df � sij dEp
ij � B dDÿ Ak dVk ÿ rT

T
dqr0 �6c�

in which r is the damaged material density, T is temperature, s is the speci®c entropy density of the
damaged material, q is the heat ¯ux vector, D and Vk are internal variables to represent material
damage and other internal structural changes, c is the free speci®c energy density of the damaged
material de®ned by

c � eÿ Ts � c�Ee
ij, T, D, Vk� �7�

where e is the speci®c internal energy density, and B and Ak are de®ned by

B � ÿr @c
@D

and Ak � r
@c
@Vk

�8�

For an isothermal elastic process, the increment of the free energy density of the damaged material is

d�rc� � @ �rc�
@Ee

ij

dEe
ij � sij dEe

ij � dW e �9�

according to Eq. (6a), where W e is the elastic strain energy density of the damaged material.
It is reasonable to assume that the mechanical dissipation due to any internal structure changes and

thermal dissipation due to conduction of heat are independent (pp. 64 in Lemaitre and Chaboche,
1990). Eq. (6c) may be expressed equally by

df1 � sij dEp
ij � B dDÿ Ak dVkr0 �10a�

df2 � ÿ
rT
T

dqr0, �10b�

in which the increment of mechanical dissipation consists of three parts for an elastoplastic damage
process, i.e. plastic dissipation, damage dissipation and cold work dissipation. It has been shown
that the cold work dissipation represents only 5±10% of the plastic dissipation, which is neglected
in the present analysis. Therefore, the increment of the mechanical energy dissipation density is

Q.M. Li / International Journal of Solids and Structures 37 (2000) 4539±4556 4543



df1 � sij dEp
ij � B dD �11�

for the damaged material.
On the other hand, the increments of the elastic strain energy and the mechanical energy dissipation

for the corresponding matrix material within the unit cell of a damaged material are

d �W
e � �sij d�Ee

ij�1ÿ f � �12a�

d �f1 � �sij d�Ep
ij�1ÿ f �; �12b�

in which, factor (1ÿf ) represents a reduction of material volume from damaged material to its
corresponding virgin, or matrix, material.

3.2. Energy equivalence principles

There are two di�erent energy processes in an elastoplastic damaged material, i.e. an elastic process
and a dissipative process. According to Lee (1981), elastic and plastic deformations can be decomposited
in an elastoplastic deformation. This method has been used for a general elastoplastic-damage
dissipation problem (Li, 1999b). Thus, the energy types associated with elastic and inelastic (dissipative)
processes in a general elastoplastic-damage dissipation problem belong to di�erent energy types.
According to the energy correlating principle proposed in section 2.3, the following two energy
equivalent principles are derived from the thermodynamic results outlined in section 3.1.

Energy Equivalent Principle I: The increment of the elastic strain energy of a unit cell of the damaged
material is correlated with the increment of the elastic strain energy in its corresponding matrix material,
i.e.

sij dEe
ij � �sij d�Ee

ij�1ÿ f �; �13�

Energy Equivalent Principle II: The increment of mechanical dissipative energy in a damaged material
during a dissipative process is correlated with the increment of mechanical dissipative energy in its
corresponding matrix material, i.e.

sij dEp
ij � B dD � �sij d�Ep

ij�1ÿ f �: �14�

It should be noted that Energy Equivalent Principle I is expressed in an incremental form and includes
the material volume reduction due to material damage, which are not taken into account in the existing
hypothesis of elastic strain energy equivalence. An incremental expression is equivalent to an integral
expression when elastic deformation has no in¯uence on damage evolution, which is used in the
following analysis in section 3.3. Energy Equivalent Principle II is slightly di�erent from the existing
plastic strain energy equation in VGM (Tvergaard, 1981, 1990; Tvergaard and Needleman, 1984)
because the damage term, B dD, is included in the currently proposed Energy Equivalent Principle II for
a complete dissipative energy correlation between damaged material and its corresponding matrix
material. Further discussion will be given in section 3.3.

3.3. Results

The von-Mises equivalent stress and equivalent elastic strain as well as the hydrostatic stress and
elastic volumetric strain of a damaged material are de®ned by
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se �
����������������������������������������������������
3

2
�sij ÿ sHdij ��sij ÿ sHdij �

r
, �15a�

Ee �
�������������������������������������������������
2

3
�Ee

ij ÿ Ee
Hdij ��Ee

ij ÿ Ee
Hdij �

r
, �15b�

sH � 1

3
skldkl, �15c�

Ee
H �

1

3
Ekldkl, �15d�

respectively, which satisfy the following relationships

se � 3

2

E

1� n
Ee �16a�

sH � E

1ÿ 2n
Ee

H: �16b�

The elastic strain energy density of a damaged material is

W e �W e
d �W e

v �
s2

e

2E

"
2

3
�1� n� � 3�1ÿ 2n�

�
sH

se

�2
#
, �17�

where

W e
d �
�1� n�
3E

s2
e �18a�

W e
v �

3�1ÿ 2n�
2E

s2
H �18b�

are the elastic distortional and dilatational strain energy densities, respectively. Similar equations can be
derived for the corresponding matrix material when any physical quantity [ ] of the damaged material in
Eqs. (15)±(18) is substituted by its corresponding undamaged virgin state [

-
].

For a damaged material, there is no change in the plastic and damage internal variables during any
elastic processes. Suppose the elastic parameters of the damaged material depend on the damage
parameter D. Now, let us apply an elastic distortional deformation and an elastic dilatational
deformation on the damaged material, individually. According to the Energy Equivalent Principle I
which is given in section 3.2, the following integral relationships between the damaged material and its
corresponding virgin material are obtained when the elastic deformation process is assumed to have no
in¯uence on damage evolution

W e
d � �W

e

d�1ÿ f � �19a�

W e
v � �W

e

v�1ÿ f �, �19b�
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or,

1� n
E

s2
e �

1� �n
�E

�s2
e �1ÿ f � �20a�

1ÿ 2n
E

s2
H �

1ÿ 2�n
�E

�s2
H�1ÿ f �, �20b�

which predict

n � �n �21a�

E � �E
�1ÿD�2
1ÿ f

�21b�

according to the de®nition of e�ective stress in Eq. (5).
In isotropic CDM (for both equivalent strain and equivalent elastic strain energy hypotheses), a

constant Poisson's ratio is assumed (pp. 355 in Lemaitre and Chaboche, 1990). There are few
experimental data to verify this conclusion although recent work on steel in Alves (1996) supports this
conclusion, where the average value of elastic Poisson's ratio up to E peq=0.7 is na=0.29. No evidence in
Alves (1996) indicates the dependence of Poisson's ratio on the damage parameter. However, results in
Hansen and Schreyer (1994) showed a slight consistent decrease of Poisson's ratio with axial strain. It
was noticed that Hansen and Schreyer (1994) also pointed out that the apparent Poisson's ratio remains
constant with increasing damage for an isotropic model. They found that the introduction of an
anisotropic model gave more encouraging results to explore the variation nature of Poisson's ratio.

Now, let us determine the thermodynamic force B de®ned by Eq. (8). According to Eq. (7), c is a
function of E eij, T, D and Vk. However, the material damage and other internal variables, Vk, developed
during any loading/dissipative process, will retain their values during an elastic unloading process. Thus,
the free energy density of a damaged material can be expressed by the elastic strain energy density of the
damaged material, as shown in Eq. (9). The in¯uence of damage on the free energy density is
represented by the change of elastic parameters with the damage parameter, and the in¯uence of plastic
dissipation on the free energy density is the elastic range determined by strain hardening in a yield/
loading function. Therefore, B is given by

B � @�rc�
@D

����
Ee
ij

� ÿ@W
e

@D

����
Ee
ij

: �22�

A similar conclusion may be reached by the assumption of decoupling between plastic internal
parameters and other e�ects, as shown by Lemaitre and Chaboche (1990, pp. 400).

By using Eq. (16a), the elastic strain energy density of damaged material is

W e �
�
W e

E

�
E, �23�

in which

W e

E
� g�Ee

ij, n� � 9E2e
8�1� n�2

"
2

3
�1� n� � 3�1ÿ 2n�

�
2�1� n�Ee

H

3�1ÿ 2n�Ee

�2
#
� g�Ee

ij, �n� �24�

Q.M. Li / International Journal of Solids and Structures 37 (2000) 4539±45564546



which is independent of the damage parameter, D, for a given elastic strain. Thus, Eqs. (22)±(24) give

B � ÿ@W
e

@D

����
Ee
ij

� ÿW
e

E

�
dE

dD

�
�25�

in which, E is a function of damage parameter D that has been con®rmed by many test results.
Up to now, we have not used any equivalent hypothesis to determine the value of the damaged

Young's modulus E. According to the equivalent strain and equivalent elastic strain energy hypotheses,
the values of E are

E � �E�1ÿD� �26a�

E � �E�1ÿD�2, �26b�
respectively (Hansen and Schreyer, 1994). While, E is determined by Eq. (21b) when the method in the
present paper is used. Thus, the values of B in Eq. (25) for these three di�erent hypotheses are

B �W eG�D� �27�
which, together with Eq. (25), predicts G(D )=ÿd(lnE )/dD, or,

G�D� � 1

1ÿD
�28a�

for equivalent strain hypothesis

G�D� � 2

1ÿD
�28b�

for equivalent elastic strain energy hypothesis and

G�D� � 4ÿ aD
3
2 ÿ 3aD

1
2

2�1ÿD��1ÿ aD
3
2 �

�28c�

for the present theory, according to Eqs. (26a) and (26b) and Eq. (21b). Fig. 1 contains a comparison
between the three di�erent hypotheses and shows that the current results lay between the equivalent
strain and equivalent elastic strain energy hypotheses for a valid range of the damage parameter, D.

Now consider the two terms in Eq. (11). The total mechanical dissipation energy density of a
damaged material consists of two parts according to Eq. (11), i.e.

f1 �W p �W d �29�
where

W p �
�Ep

ij

0

sijE
p
ij �

�Ep
e

0

se dEp
e �30�

is the plastic strain energy density where the equivalent plastic strain is de®ned by Eq. (15b) when
plastic strain components are used instead of elastic strain components, and the damage dissipation
density is
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W d �
�D
0

B dD � ÿ
�D
0

�
W e

E

�
dE

dD
dD � ÿW

e

E

�D
0

dE

dD
dD �W e

�
�E

E
ÿ 1

�
, �31�

because W e/E is independent of D for a given elastic strain.
The hydrostatic stress, sH, is not very signi®cant during the ductile deformation in a tension state

before a fully developed necking stage starts. In this case, the elastic strain energy density in Eq. (17) is
much smaller than the plastic strain energy density, which implies that W d<<W p according to Eq. (31).
Thus, the Energy Equivalent Principle II, expressed by Eq. (14) gives

sij dEp
ij � �sij d�Ep

ij�1ÿ f � �32�

which is a fundamental equation in VGM and will be discussed further in section 4.

4. Applications

4.1. Plastic yield condition

The plastic yield condition de®nes a sub-space in stress space, within which the material behaves
elastically. A general isotropic yield condition may be expressed by

f �sij � � h�Vk�, �33�

Fig. 1. Variation of the parameter G in Eq. (27) with damage parameter (D ), where a=1 for a cubic void and a=0.752 for a

spherical void, respectively.
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f(sij)=h(Vk)vVk=0 de®nes the initial yield surface. Vk are plastic internal variables, such as the isotropic
hardening parameter. It is evident that if Eq. (33) represents a yield condition, then

F� f �sij �� � F�h�Vk�� �34�

is also a yield condition, equivalently, if and only if F is a continuous one to one relationship for all
possible values of f(sij) and h(Vk).

It is well-known that the undamaged material plasticity is initiated by the stored elastic distortional
strain energy. Thus, an elastic distortional strain energy density of the damage-free matrix material may
be used to de®ne a yield condition, i.e.

�f� �sij � � �W
e

d � �h� �Vk�, �35�

or equivalently, according to Eqs. (34) and (18a)

�se �
��������������������������
3 �E

�1� �n�
�h� �Vk�

s
� R0 � R��Ep

e�: �36�

in which, R0 is the initial yield stress of the matrix material and R��Ep
e� is the hardening function. The

e�ective stress satis®es Eq. (36) and may be replaced by the corresponding macroscopic stress de®ned in
Eq. (5), thus the macroscopic yield condition for a damaged material is

f �sij, D� � se

1ÿD
� R0 � R��Ep

e� �37�

which has been employed by most CDM models (Lemaitre and Choboche, 1990; Ju, 1989; Voyiadjis
and Kattan, 1990; Chow and Wang, 1987b). The macroscopic yield condition expressed in Eq. (37) is
not a simple replacement of �se by se/(1ÿD ), but satis®es Eq. (19a), or the Energy Equivalent Principle
I. This viewpoint was not shown in previous studies. It should be noted that �Ep

e cannot be replaced by E pe
in Eq. (37) because the Energy Equivalent Principle I and the equivalent strain hypothesis are
controversial, as discussed in section 4.3. The relationship between �Ep

e and E pe will be discussed in section
4.2.

Generally speaking, the de®nition of the e�ective stress in Eq. (5) only considers the geometry
in¯uence of damage on the e�ective resisting area. Any interactions between the damage are not
included. A general de®nition of the e�ective stress is proposed here to include these in¯uencing factors
within the valid range of the CDM, i.e.

�sij � sij
M�D� : �38�

in which M(D ) is de®ned as an e�ective resistance area factor. All previous results in the present paper
may be generalized by substituting (1ÿD ) by M(D ). In order to obtain the common VGM yield
function from the concept of e�ective stress in CDM, M(D ) is de®ned as

M�D� �
���������������������������������������������������������������������������
�1� q3f �2� ÿ 2q1f � cosh

�
3q2
2

sH

sM

�s
�39�

where q1=1.5, q2=1 and q3=q 2
1; f
� is the modi®ed damage volume friction, given by

f � � f when fRfc
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f � � fc � fu ÿ fc
fF ÿ fc

� fÿ fc� when f > fc, �40�

where fc=0.15, fF=0.25 and fu=1/q1 have been used in several applications (Tvergaard, 1981, 1990;
Tvergaard and Needleman, 1984); sM is the von-Mises equivalent stress for the damage-free matrix
material, i.e.

sM � �se � R0 � R��Ep
e�: �41�

Thus, Eqs. (36) and (34) together with Eq. (38) predict a yield function

F�sij, sM, f � � s2
e

s2
M

� 2q1f
� cosh

�
3q2
2

sH

sM

�
ÿ �1� q3f

�2� � 0, �42�

which is the well-known modi®ed Gurson's model (Gurson, 1977; Tvergaard, 1981, 1990; Tvergaard and
Needleman, 1984) for a porous material with spherical voids. It appears that M(D ) depends on both the
damage development stage and the current macroscopic hydrostatic stress. In a uniaxial tensile test,
sH=s1/3, sM=s1/M(D ). Thus, sH/sM=M(D )/3, and therefore, Eq. (39) becomes

M�D� �
����������������������������������������������������������������������������
�1� q3f �2� ÿ 2q1f � cosh

�
q2M�D�

2

�s
, �43�

which is solved numerically. Fig. 2 gives the variation of M(D ) with D for the parameters given before,
which is compared with M(D )=1ÿD used in CDM. It transpires that M(D )=1ÿD is close to M(D )

Fig. 2. Variation of the e�ective resistance area factor, M(D ), with the damage parameter, D, for VGM and CDM models.
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given by Eq. (43) up to D = 0.37 for this particular VGM model. One important feature in Fig. 2 is
that M(D )=0 at critical damage parameter, f=fF(or D=Df=af 3/2F ) for the modi®ed Gurson's model,
which means that the material sti�ness matrix degenerates to zero when material damage approaches its
critical value. This advantage allows the modi®ed Gurson's model to be used for the whole damage
development process continuously up to complete material failure.

In CDM, the yield surface includes the damage softening e�ect through the factor (1ÿD ). The critical
values of M(D )=(1ÿD ) range from 0.15 to 0.83 for various materials according to Lemaitre and
Chaboche (1990, pp. 364), which de®nes material failure before the sti�ness matrix degenerates to zero.

The above discussion indicates that a VGM can be obtained from the foundation of CDM. However,
a VGM gives a more realistic expression for the yield surface because it is obtained from an average
analysis of void and aggregate arrangements, including their interactions through Eqs. (38) and (39),
which are neglected in CDM models.

4.2. Macroscopic plastic ¯ow rule

It has been shown that the plastic ¯ow rule for damage-free matrix material is

d�Ep
ij � d�l

@ �f� �sij �
@ �sij

: �44�

Although the macroscopic plastic ¯ow rule of a damaged material may be obtained in other ways
without using e�ective stress concept (Li, 1999b), we will use the concept of e�ective stress in the
following discussion to obtain the macroscopic ¯ow rule.

According to Eqs. (32) and (44)

dEp
ij � �1ÿ f � �sij

sij
d�Ep

ij �
1ÿ f

M�D� d�l
@ �f� �sij �
@ �sij

� dl
@ f �sij, D�
@sij

, �45�

when material damage and plasticity are decoupled, and where dl=(1ÿf )d�l and f (sij, D )=f
-
( �sij). Eq.

(45) is a normality expression of the macroscopic ¯ow rule.
When the von-Mises yield condition in Eq. (36) is used for damage-free matrix material, following

relationships are obtained from Eqs. (44) and (45)

d�l � d�Ep
e �

�������������������
2

3
d�Ep

ij d�Ep
ij

r
�46a�

dl �M�D� dEp
e �M�D�

�������������������
2

3
dEp

ij dEp
ij

r
, �46b�

respectively, which have been obtained in CDM previously when M(D )=(1ÿD ). Thus, a relationship
between dE pe and d�E pe is

dEp
e �

1ÿ f

M�D� d�Ep
e : �47�

The same result can be obtained by using Eq. (32) directly when Eq. (32) is expressed as

se dEp
e � sij dEp

ij � �se d�Ep
e�1ÿ f � �48�
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and �se is substituted by se/M(D ) using Eq. (38). Eq. (48) is also a fundamental equation in VGM when
�se and d�Ep

e are substituted by sM and dEM to represent the equivalent stress and the incremental
equivalent plastic strain in the damage-free matrix material (Tvergaard, 1981, 1990; Tvergaard and
Needleman, 1984).

These results show that VGM can be derived from CDM according to the proposed theory. The
normality requirement for macroscopic plastic ¯ow can be proved by using the same procedure in
CDM. Gurson (1977) has employed a totally di�erent proof in which the macroscopic yield condition
and ¯ow rule are derived for a particular void shape and matrix composite by using an average
technique and bound theory. The physical foundation used in VGM is rigid-plastic theory, which is less
fundamental than the thermodynamic theory used in CDM. However, the average technique and a
detailed void-matrix model in VGM is more realistic than the e�ective stress de®ned by Eq. (5). Thus,
both theories have advantages in applications and have solved similar material damage problems but
with quite di�erent expressions.

4.3. Damage measurements

There are several di�erent ways based on the equivalent hypotheses to measure the development of
damage by measuring the degradation of Young's modulus. Equivalent strain and equivalent elastic
strain energy hypotheses are used frequently for this purpose. However, it has been shown that there is
a signi®cant di�erence between the predictions of these two hypotheses. The degradation of Young's
modulus predicted by these two hypotheses and the present theory are

E

�E
�M�D� �49a�

for the equivalent strain hypothesis

E

�E
�M2�D� �49b�

for the equivalent elastic strain energy hypothesis
and

E

�E
� M2�D�

1ÿ f
�49c�

for present theory
when the general de®nition of e�ective stress in Eq. (38) is used. Several interesting cases from Eq.

(49) are now examined.

1. Di�erences between the various hypotheses: Hansen and Schreyer (1994) have examined the
di�erences between the equivalent strain and equivalent elastic strain energy hypotheses. If the simple
relationship M(D )=1ÿD is used, the degradation of Young's modulus from three equivalent
hypotheses are shown in Fig. 3, where the current results lay between the results from the equivalent
strain and equivalent elastic strain energy hypotheses. It implies that the equivalent strain hypothesis
overestimates the material sti�ness, while the equivalent elastic strain energy hypothesis
underestimates the material sti�ness.

2. Measurement of material damage: In Eq. (49), E and E
-
are both measurable and therefore, many

people have used them to obtain the material damage parameter, D. When material damage is
de®ned by Eqs. (1)±(3), it has a unique meaning. However, when M(D ) is assumed to be (1ÿD ), as
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in many CDM models, there is a large di�erence in the damage parameter D. For example, Alves
(1996) measured the damage parameters using di�erent techniques, which revealed a signi®cant
di�erence between the geometry measurement and other methods, as shown in Table 1 for mild steel.
Although, the author claimed that the damage parameter might be seen as an adjustable parameter,
which has also been pointed out by Kachanov (1994), these inconsistencies are still a signi®cant
di�culty for CDM. However, if M(D ) is treated as a general function of D using Eq. (38), this
di�culty can be resolved. According to the new de®nition of e�ective stress in Eq. (38), the damage
parameter de®ned by Eq. (5) under various equivalent hypotheses is DM=(1ÿM(D )), which is not
the damage parameter, D, de®ned geometrically by Eqs. (1)±(3), but a function of the damage
parameter. Because the only parameter which needs to be evaluated is DM throughout the use of
CDM, even for de®ning material failure. Thus, the existing models of CDM, no matter which
equivalent hypothesis is used, still gives reasonable results if DM is used consistently in both
theoretical model and experimental programm. However, if one would like to use the real value of
the damage parameter, D, there is a signi®cant di�erence among various de®nitions of D. For
example, the di�erence in damage parameter, D, obtained by measuring Young's modulus and
measuring the void area, is around 102±103 according to Table 1. In the modi®ed Gurson`s model,

Fig. 3. Degradation of Young's modulus with damage parameter, D, for various equivalent hypotheses.

Table 1

Static critical damage parameters for mild steel according to di�erent de®nitions and experimental techniques (Alves, 1996)

Damage parameter Values Technique

DEE 0.45 Equivalent strain hypothesis

DEW 0.26 Equivalent elastic strain energy hypothesis

DV 0.20 Voltage measurement

DHV 0.041 Hardness measurement

DS 0.0072 Measurement of the voids area
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the critical damage volume friction is fF=0.25, which corresponds to a critical damage area density
DF=0.48, according to Eq. (4). This value is much larger than the value in Alves (1996), where the
measurement of the voids area after material failure gives Ds=0.0072. If they both depend on a
geometrical de®nition of the damage parameter in section 2.1, such a large di�erence, despite the
di�erence between materials, appears to be unacceptable. Thus, systematic experimental studies are
necessary for assessing the reality of the various damage parameters in di�erent damage models.

5. Conclusions

Energy equivalence principles are established based on an energy correlation hypothesis in the present
paper. These principles are used to obtain mechanical property relationships between a damaged
material and its virgin state of matrix material. The proposed theory uni®es the continuum damage
mechanics (CDM) and void growth model (VGM) on the same thermodynamic foundation.

The advantages and disadvantages of both CDM and VGM are discussed based on the proposed
theory. Two well-known equivalence hypotheses in damage mechanics, i.e. equivalent strain and
equivalent elastic strain energy hypotheses, are examined and compared with the energy equivalent
principles obtained in the present paper. The predicted results based on the present theory lay between
the results obtained from equivalent strain and equivalent elastic strain energy hypotheses.
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Appendix A

Consider a group of regularly distributed cubic voids with characteristic length b within a cubic

Fig. A1. A plane view of regularly distributed voids within a cube, (a) cubic void, and (b) spherical void.
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block with characteristic length L, shown in Fig. A1(a), the line, area and volume densities of the
damage are

D � n2b2

L2
, f � n3b3

L3
and l � nb

L
�A1�

according to Eqs. (1)±(3), in which n is the void numbers within the length L.
Similarly, the line, area and volume densities of damage are

D � pn2b2

4L2
, f � pn3b3

6L3
and l � nb

L
�A2�

for a group of regularly distributed spherical voids in Fig. A1(b).
Eq. (4) is obtained from Eqs. (A1) and (A2).
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